A Review of Database Reconstruction

Brice Minaud (Inria/ENS)

joint work with:
Paul Grubbs (Cornell), Marie-Sarah Lacharité (RHUL), Kenny Paterson (ETH)
[LMP18] (S&P 2018), [GLMP18] (CCS 2018), [GLMP19] (S&P 2019)

ICERM workshop, Brown University, 2019
Searchable Encryption: encrypted database allowing search queries. In the static case: no updates.

Adversary: honest-but-curious host server.

Security goal: confidentiality of data and queries.
Generic solutions (FHE) are infeasible at scale → for efficiency reasons, some leakage is allowed.

Security model: parametrized by a leakage function L.

Server learns **nothing** except for the output of the leakage function.
Symmetric Searchable Encryption (SSE) = keyword search:

- Data = collection of documents.
 e.g. messages.
- Search query = find documents containing given keyword(s).
Beyond Keyword Search

For an **encrypted database management system**:

- **Data = collection of records.**
 e.g. *health records.*

- **Basic query examples:**
 - find records with given value.
 e.g. *patients aged 57.*
 - find records within a given range.
 e.g. *patients aged 55-65.*
In this talk: **range queries**.

- Fundamental for any encrypted DB system.
- Many constructions out there.
- Simplest type of query that can't "just" be handled by an index.

Natural solutions:

Order-Preserving, Order-Revealing Encryption.

- Plaintexts are *ordered*, ciphertexts are *ordered*.
- The encryption map *preserves order*.
Attacks Exploiting ORE*

› “Sorting” attack: if every possible value appears in the DB… Just sort the ciphertexts and you learn their value!

› “CDF-matching” attack: say the attacker has an approximation of the Cumulative Distribution Function of DB values…

*not L/R ORE.
Leakage-Abuse Attacks

“Leakage-abuse attacks” (coined by Cash et al. CCS'15):

- Do not contradict security proofs.
- Can be devastating in practice.

ORE: order information can be used to infer (approximate) values. **Leaking order is too revealing.**

→ “Second-generation” schemes enable range queries *without* relying on OPE/ORE.
What is the point of these attacks?

- Understand concrete security implications of leakage.
- “Impossibility results” → help guide design.

Approach: consider general settings. Pioneered by [KKNO16].

Here:

- Range queries.
- Passive, persistent adversary. No injections, no chosen queries.
1. Access pattern leakage.

3. Volume leakage.
Access Pattern Leakage
SE schemes supporting range queries are proven secure w.r.t. a leakage function including access pattern leakage.

What can the server learn from the above leakage?

Let $N =$ number of possible values.
Assume a **uniform distribution** on range queries.
Induces a distribution \(f \) on the prob. that a given value is hit.

Idea: for each record...

1. Count frequency at which the record is hit.
 → gives estimate of probability it’s hit by uniform query.
2. deduce estimate of its value by “inverting” \(f \).
Step 1: for every record, estimate prob of the record being hit.

Step 2: “invert” \(f \).

Step 3: break the symmetry, i.e. reconcile which values are on the same side of \(N/2 \).

After \(O(N^4 \log N) \) uniform queries, previous alg. recovers the exact value of all records.
After $O(N^4 \log N)$ uniform queries, previous alg. recovers the exact value of all records.

Remarks:
- Requires **uniform** distribution.
- **Expensive**. In fact, uses up all possible leakage information!
- Lower bound of $\Omega(N^4)$.
Step 0: find suitable “anchor” record.

Step 1: for every record, estimate distance to anchor.

Step 2: “invert” f. costs a constant factor!

Step 3: break the symmetry, i.e. reconcile which values are on the same side of N/2.

After $O(N^2 \log N)$ uniform queries, previous alg. recovers the exact value of all records.
Cheaper KKNO16 attack

After $O(N^2 \log N)$ uniform queries, previous alg. recovers the exact value of all records.

Remarks:
- Requires uniform distribution.
- Requires existence of a favorably placed record.
- Still fairly expensive.
- Lower bound of $\Omega(N^2)$. Can't hope to get below.
Approximate Reconstruction

Strongest goal: **full** database reconstruction = recovering the exact value of every record.

More general: **approximate** database reconstruction = recovering all values within εN.

- $\varepsilon = 0.05$ is recovery within 5%. $\varepsilon = 1/N$ is full recovery.

(“Sacrificial” recovery: values very close to 1 and N are excluded.)
Database Reconstruction

[KKNO16]: full reconstruction in $O(N^4 \log N)$ queries.

[GLMP19]:
- $O(\varepsilon^{-4} \log \varepsilon^{-1})$ for approx. reconstruction.
- $O(\varepsilon^{-2} \log \varepsilon^{-1})$ with mild hypothesis.

<table>
<thead>
<tr>
<th>Full. Rec.</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(N^4 \log N)$</td>
<td>$\Omega(\varepsilon^{-4})$</td>
</tr>
<tr>
<td>$O(N^2 \log N)$</td>
<td>$\Omega(\varepsilon^{-2})$</td>
</tr>
</tbody>
</table>

Scale-free: does not depend on size of DB or number of possible values.
- Recovering all values in DB within 5% costs $O(1)$ queries!

Analysis: uses VC theory + draws connection to machine learning. See Paul's talk!
Step 1: for every record, estimate prob of the record being hit.

Step 2: “invert” f.

Instead of support = integers 1 to N, take reals [0,1].

...so “$N = \infty$”!

The previous algorithm still works!
On the i.i.d. Assumption

+ **Scale-freeness.** N and DB size irrelevant for query complexity.

- We are assuming **uniformly distributed** queries.

In reality we are assuming:

- Queries are **uniform**.
- The **adversary knows** the query distribution.
- Queries are **independent and identically distributed**.

This is not realistic.

What can we learn without that hypothesis?
Order Reconstruction
Problem Statement

What can the server learn from the above leakage?

This time we don't assume i.i.d. queries, or knowledge of their distribution.
Range Query Leakage

Query A matches records a, b, c.
Query B matches records b, c, d.

Then this is the only configuration (up to symmetry)!

→ we learn that records b, c are between a and d.

We learn something about the order of records.
Range Query Leakage

Query A matches records a, b, c.
Query B matches records b, c, d.
Query C matches records c, d.

Then the only possible order is a, b, c, d (or d, c, b, a)!

Challenges:

- How do we extract order information? (What algorithm?)
- How do we quantify and analyze how fast order is learned as more queries are observed?
Challenge 1: the Algorithm

Short answer: there is already an algorithm!

Long answer: **PQ-trees.**

X: linearly ordered set. Order is unknown.

You are given a set S containing some intervals in X.

A **PQ tree** is a compact (linear in |X|) representation of the set of all permutations of X that are compatible with S.

Can be updated in linear time.

Note: was used in [DR13], didn’t target reconstruction.
PQ Trees

Order is completely **unknown**.
- any permutation of **abc**.

Order is completely **known** (up to reflection).
- **abc’or ‘cba’**.

Combines in the natural way.
We want to **quantify** order learning...
Challenge 2a: Quantify Order Learning

\[r_1, r_2, r_3, \ldots \]

No information

\[\ldots \quad r_1, r_2, r_3, \ldots \]

Full reconstruction

\(\varepsilon \)-Approximate order reconstruction.

Roughly: we learn the order between two records as soon as their values are \(\geq \varepsilon N \) apart. (\(\varepsilon = 1/N \) is full reconstruction)

Note: compatible with “ORE-style” CDF matching.
Approximate Order Reconstruction

No information

Full reconstruction

\(P \) \(Q \)

\(r_1 \) \(r_2 \) \(r_3 \) ...

\(r_1 \) \(r_2 \) \(r_3 \) ...

\#queries?

\#queries?

\#queries?

Diameter \(\leq \epsilon N \)

\(\epsilon \)-Approximate reconstruction
Approximate Order Reconstruction

No information

$O(\varepsilon^{-1} \log \varepsilon^{-1})$ queries

$O(N \log N)$ queries

Full reconstruction

ε-Approximate reconstruction

Conclusion: learn order very quickly.

Note: some (weak) assumptions are swept under the rug.
Experiments

APPROXORDER experimental results

$R = 1000$, compared to theoretical ε-net bound

- Max. sacrificed symmetric value
 - $N = 100$
 - $N = 1000$
 - $N = 10000$
 - $N = 100000$

- Max. bucket diameter
 - $N = 100$
 - $N = 1000$
 - $N = 10000$
 - $N = 100000$

- $\varepsilon^{-1} \log \varepsilon^{-1}$

ApproxOrder experimental results

$R = 1000$, compared to theoretical ε-net bound

- $N = 100$
- $N = 1000$
- $N = 10000$
- $N = 100000$
- **Resilient**, scale-free attacks.

- Effective in practice in some realistic scenarios.

- Watch out for additional leakage. E.g.:
 - Search pattern.
 - Rank information (e.g. L/R ORE). Damaging for low #queries.
Volume Leakage
Attacker only sees volumes = number of records matching each query.

What can the server learn from the above leakage?
Volumes

The attacker wants to learn exact counts.

Some volumes

A volume = number of records matching some range.
KKNO16 Volume Attack

Assume **uniform** queries.

Step 1: recover exact probability of every volume ➔ number of queries that have each volume.

Step 2: express and solve equation system linking above data back to DB counts. (Ends up as polynomial factorization.)

After \(O(N^4 \log N)\) uniform queries, previous alg. recovers all DB counts.

Remarks:

- Requires **uniform** distribution.

- **Expensive.** In fact, uses up *all possible* leakage information!

- Lower bound of \(\Omega(N^4)\).
Elementary Volumes [GLMP18]

Counts \[3\] \[7\] \[1\] \[12\]

Value \[1\] \[2\] \[3\] \[4\]

“Elementary”
ranges

Elementary volumes = volumes of ranges \([1,1], [1,2], [1,3]…\)
Elementary Volumes

Counts 3 7 1 12

Value 1 2 3 4

Fact:
\[\text{vol}([a,b]) = \text{vol}([1,b]) - \text{vol}([1,a]) \]

so...

- Every volume is = difference of two elementary volumes.
- Knowing set of elementary volumes \(\leftrightarrow\) knowing counts.

Our goal: finding elementary volumes.
The Attack

Assumption: the volumes of all queries are observed.

Draw an **edge** between volumes *a* and *b* iff \(|b-a|\) is a volume.
Summary

Attack: elementary volumes form a clique in the volume graph → clique-finding algorithm reveals them.

For structured queries, even just volume leakage can be quite damaging. Attack requires strong assumption.

In the article:

‣ Pre-processing to avoid clique finding.
‣ Analysis of parameters + experiments.
‣ Other attacks.
Conclusion
Conclusion

Access pattern:

- **Resilient**, scale-free attacks.
- Effective in practice in some realistic scenarios.

→ non-trivial countermeasures are required.

Volume attacks:

- **Fragile attacks**. Currently.
- Expensive query complexity $O(N^2 \log N)$.
- Unsatisfactory: limits of attacks not clear.

→ “simple” countermeasures might be enough in most scenarios.

Some open problems: mixed queries, scale-free volumes.