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Outsourcing Data
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Data upload

Data access

Client Server

Searchable Encryption: encrypted database allowing search 
queries. In the static case: no updates.


Adversary: honest-but-curious host server.


Security goal: confidentiality of data and queries.



Security Model
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Generic solutions (FHE) are infeasible at scale → for efficiency 
reasons, some leakage is allowed.

Client Adversarial 
Server

Data upload

Data access

Security model: parametrized by a leakage function L.


Server learns nothing except for the output of the leakage function.

Server 
learns 

L(query, DB)



Keyword Search
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Data upload

Search query
Matching records

Client Server

Symmetric Searchable Encryption (SSE) = keyword search:


• Data = collection of documents.           e.g. messages.


• Serch query = find documents containing given keyword(s).



Beyond Keyword Search

 5

Data upload

Search query
Matching records

Client Server

For an encrypted database management system:


• Data = collection of records.                e.g. health records.


• Basic query examples:

	 - find records with given value.            e.g. patients aged 57.

	 - find records within a given range.     e.g. patients aged 55-65.



Range Queries
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In this talk: range queries.

‣Fundamental for any encrypted DB system.

‣Many constructions out there.

‣Simplest type of query that can't “just” be handled by an index.

Natural solutions:


Order-Preserving, Order-Revealing Encryption.


- Plaintexts are ordered, ciphertexts are ordered.


- The encryption map preserves order.
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Attacks Exploiting ORE*
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‣“Sorting” attack: if every possible value appears in the DB...

Just sort the ciphertexts and you learn their value!

‣“CDF-matching” attack: say the attacker has an approximation 
of the Cumulative Distribution Function of DB values...

3 11 5 1 8 7 10 6 2 4 91 2 3 4 5 6 7 8 9 10 11

*not L/R ORE.



Leakage-Abuse Attacks
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→ “Second-generation” schemes enable range queries without 
relying on OPE/ORE.

“Leakage-abuse attacks” (coined by Cash et al. CCS'15): 

‣ Do not contradict security proofs.


‣ Can be devastating in practice.

ORE: order information can be used to infer (approximate) values. 
Leaking order is too revealing.



Cryptanalysis and Leakage Abuse
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What is the point of these attacks? 

- Understand concrete security implications of leakage.


- “Impossibility results” → help guide design.

Approach: consider general settings. Pioneered by [KKNO16].

Here: 

‣ Range queries.


‣ Passive, persistent adversary. No injections, no chosen queries.



Roadmap
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1. Access pattern leakage.


3. Volume leakage.



Access Pattern Leakage

1 3



Range Queries
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Range = [40,100]

Client Server
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What can the server learn from the above leakage?

SE schemes supporting range queries are proven secure w.r.t. a 
leakage function including access pattern leakage.

Let N = number of possible values.



KKNO16 Attack
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1 N

Less probable More probable
Assume a uniform distribution on range queries.

Idea: for each record...

1. Count frequency at which the record is hit.

  → gives estimate of probability it’s hit by uniform query. 
2. deduce estimate of its value by “inverting” f.

values

f

Induces a distribution f on the prob. that a given value is hit.



KKNO16 Attack
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1 N

Step 1: for every record, estimate prob of the record being hit.

Step 2: “invert” f.

f

values

After O(N4 log N) uniform queries, previous alg. recovers 
the exact value of all records.

Step 3: break the symmetry, i.e. reconcile which values are on 
the same side of N/2.



KKNO16 Attack
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After O(N4 log N) uniform queries, previous alg. recovers 
the exact value of all records.

Remarks:


- Requires uniform distribution.


- Expensive. In fact, uses up all possible leakage information!


- Lower bound of Ω(N4).



Revisiting the Analysis, Part I [GLMP19]
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1 N

Step 1: for every record, estimate distance to anchor.

Step 2: “invert” f.

f

values

Step 3: break the symmetry, i.e. reconcile which values are on 
the same side of N/2.

costs a square factor!

Step 0: find suitable “anchor” record.

⚓
f

costs a constant factor!

After O(N4 log N) uniform queries, previous alg. recovers 
the exact value of all records.

After O(N2 log N) uniform queries, previous alg. recovers 
the exact value of all records.



Cheaper KKNO16 attack
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After O(N2 log N) uniform queries, previous alg. recovers 
the exact value of all records.

Remarks:


- Requires uniform distribution.


- Requires existence of a favorably placed record.


- Still fairly expensive.


- Lower bound of Ω(N2). Can't hope to get below.



Approximate Reconstruction
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Strongest goal: full database reconstruction = recovering the 
exact value of every record.

More general: approximate database reconstruction = 
recovering all values within εN.


ε = 0.05 is recovery within 5%. ε = 1/N is full recovery.

(“Sacrificial” recovery: values very close to 1 and N are excluded.)



Database Reconstruction
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[KKNO16]: full reconstruction in O(N 4 log N) queries.

[GLMP19]:

‣  O(ε-4 log ε-1) for approx. reconstruction.

‣  O(ε-2 log ε-1) with mild hypothesis.


Full. Rec.

O(N4 log N)
O(N2 log N)

Lower Bound
Ω(ε-4)
Ω(ε-2)

recovers

Scale-free: does not depend on size of DB or number of possible 
values.

→ Recovering all values in DB within 5% costs O(1) queries!

Analysis: uses VC theory + draws connection to machine learning. 
See Paul's talk!



Intuition for Scale-Freeness
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1 N

Step 1: for every record, estimate prob of the record being hit.

Step 2: “invert” f.

f

values

Instead of support = integers 1 to N, take reals [0,1].


...so “N = ∞” !

0 1

The previous algorithm still works!



On the i.i.d. Assumption
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+ Scale-freeness. N and DB size irrelevant for query complexity.


- We are assuming uniformly distributed queries. 


In reality we are assuming:

‣Queries are uniform.

‣ The adversary knows the query distribution.

‣Queries are independent and identically distributed.

This is not realistic.

What can we learn without that hypothesis?



Order Reconstruction

P

Q...

...



Problem Statement
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Range = [40,100]

Client Server
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This time we don't assume i.i.d. queries, or knowledge of their 
distribution.

What can the server learn from the above leakage?



Range Query Leakage
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Query A matches records a, b, c.

Query B matches records b, c, d.

→ we learn that records b, c are between a and d.


We learn something about the order of records.

Then this is the only configuration (up to symmetry)!

0 N
A

a b c d

B



Range Query Leakage
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Query A matches records a, b, c.

Query B matches records b, c, d.

Query C matches records c, d.

Then the only possible order is a, b, c, d (or d, c, b, a)!

0 N
A

a b c d

B
C

Challenges:

‣How do we extract order information? (What algorithm?)

‣How do we quantify and analyze how fast order is 

learned as more queries are observed?



Challenge 1: the Algorithm
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Short answer: there is already an algorithm!

X: linearly ordered set. Order is unknown.


You are given a set S containing some intervals in X.

A PQ tree is a compact (linear in |X|) representation of the 
set of all permutations of X that are compatible with S.

Long answer: PQ-trees.

Note: was used in [DR13], didn’t target reconstruction.

Can be updated in linear time.



PQ Trees
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P

a b c

Order is completely unknown.

‣ any permutation of abc.

a b c

Q Order is completely known (up to reflection).

‣ abc’or ‘cba’.

P

d e

a b c

Q
Combines in the natural way.


‣ ‘abcde’, ‘abced’, ‘dabce’, ‘eabcd’, 
‘deabc’, ‘edabc’, ‘cbade’ etc.



Full Order Reconstruction
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P

No information
r1 r2 r3 …… ……

Q

r1 r2 r3

Full reconstruction

observe enough queries

We want to quantify order learning...



……

Challenge 2a: Quantify Order Learning
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P Q

No information
r1 r2 r3 …… r1 r2 r3

Full reconstruction

ε-Approximate order reconstruction.

Roughly: we learn the order between two records as soon as 
their values are ≥ εN apart. (ε = 1/N is full reconstruction)

Note: compatible with “ORE-style” CDF matching.



……

Approximate Order Reconstruction
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P Q

No information
r1 r2 r3 …… r1 r2 r3

Full reconstruction

……

Q

Diameter ≤ εN

… … …

ε-Approximate 
reconstruction

#queries?

#queries?



……

Approximate Order Reconstruction
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P Q

No information
r1 r2 r3 …… r1 r2 r3

Full reconstruction

……

Q

… … …
ε-Approximate 
reconstruction

O(N log N) queries

O(ε-1 log ε-1) queries

Note: some (weak) assumptions are swept under the rug.

Conclusion: learn order very quickly.



Experiments
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Big Picture
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Access Pattern

leaks order

+ query dist. (KKNO)

leaks values+ data dist. (GLMP19)

+ search p. (MT19, KPT19)

+ density

- Resilient, scale-free attacks.


- Effective in practice in some realistic scenarios.


- Watch out for additional leakage. E.g.:

‣ Search pattern.

‣ Rank information (e.g. L/R ORE). Damaging for low #queries.



Volume Leakage
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Problem Statement
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Range = [40,100]

Client Server
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What can the server learn from the above leakage?

Attacker only sees volumes = number of records matching 
each query.

2 matches



Volumes

 36

3 7 1 12

1 2 3 4Value

Counts

A volume = number of records matching some range.

8

13

Some volumes

The attacker wants to learn exact counts.



KKNO16 Volume Attack
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Step 1: recover exact probability of every volume ➔ number of 
queries that have each volume.

Step 2: express and solve equation system linking above data 
back to DB counts. (Ends up as polynomial factorization.)

Assume uniform queries.

After O(N4 log N) uniform queries, previous alg. recovers 
all DB counts.

Remarks:


- Requires uniform distribution.


- Expensive. In fact, uses up all possible leakage information!


- Lower bound of Ω(N4).



Elementary Volumes [GLMP18]
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3 7 1 12

1 2 3 4Value

Counts

3

10

11

23

“Elementary” 
ranges

Elementary volumes = volumes of ranges [1,1], [1,2], [1,3]...



Elementary Volumes
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3 7 1 12

1 2 3 4Value

Counts

‣Knowing set of elementary volumes ⇔ knowing counts.

vol([a,b]) = vol([1,b]) - vol([1,a])

‣Every volume is = difference of two elementary volumes.
so...

Fact:

Our goal: finding elementary volumes.



The Attack
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Assumption: the volumes of all queries are observed.
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Draw an edge between volumes a and b iff |b-a| is a volume.
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Summary
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Attack: elementary volumes form a clique in the volume 
graph → clique-finding algorithm reveals them.


For structured queries, even just volume leakage can be 
quite damaging. Attack requires strong assumption.

In the article: 

‣Pre-processing to avoid clique finding. 

‣Analysis of parameters + experiments. 

‣Other attacks.



Conclusion



Conclusion
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Access pattern:


- Resilient, scale-free attacks.


- Effective in practice in some realistic scenarios.


➔ non-trivial countermeasures are required.

Volume attacks:


- Fragile attacks. Currently.


- Expensive query complexity O(N2 log N).


- Unsatisfactory: limits of attacks not clear.


➔ “simple” countermeasures might be enough in most scenarios.

Some open problems: mixed queries, scale-free volumes.


